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Order parameter description of walk-off effect on pattern selection
in degenerate optical parametric oscillators
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Degenerate optical parametric oscillators can exhibit both uniformly translating fronts and nonuniformly
translating envelope fronts under the walk-off effect. The nonlinear dynamics near threshold is shown to be
described by a real convective Swift-Hohenberg equation, which provides the main characteristics of the
walk-off effect on pattern selection. The predictions of the selected wave vector and the absolute instability
threshold are in very good quantitative agreement with numerical solutions found from the equations describ-
ing the optical parametric oscillator.

PACS numbeps): 42.65.Tg, 46.65.Sf, 42.50p, 42.65.Y]

In the last few years, the interest in pattern formation inhind them a homogeneous state, to nonuniformly translating
nonlinear optics has increased considerdlilly This stems envelope fronts, giving rise to the formation of a nonlinear
from the fact that nonlinear optical systems show the compattern. The exact analytical expression of the transition
plexity of other spatially extended systeff§ in a context curve in terms of signal detuning and walk-off parameters
that presents additional peculiarities such as the light polars found. It reveals the existence of a scaling law governing
ization [3] and the macroscopic manifestations of quantunthe transition. Using this scaling we have performed an
propertied4]. Among all the possible devices, optical para- order parameter description, near threshold, which leads to a
metric oscillator§OPO’s have recently appeared as one ofreal convective Swift-Hohenberg equation. This equation
the most promising, not only for the richness in nonlinearprovides the generic description of the walk-off effect on
dynamics[5] but also for their potential applicatiorj§], transverse pattern formation. Based on this reduced model
including low-noise measurements and detecfiinand the  we have obtained analytical expressions for the wave-vector
possible storage of informatidi3,9]. selection rules and the threshold of the absolute instability.

In OPO'’s, the nonlinear quadratic down-conversion pro-The predictions are in very good agreement, both qualita-
cess is most efficient when the phase matching condition ively and quantitatively, with numerical simulations of the
fulfilled. This can be achieved by taking advantage of theDOPO’s original equations.
crystal birefringence to compensate for the unavoidable ma- We start from the standard model of a type | phase-
terial chromatic dispersion. As a result ordinary and extraormatched degenerate OPO in the mean-field approximation
dinary rays may have different Poynting vector directions[10,11]:
and therefore the rays may diverge, i.e., walk-off, from one
another as they propagate through the nonlinear medium. d:Ay= yo[—(1+iA0)A0+iaOALAO—Ai+ E(X,y)],

Very recently, convective instabilities and noise-sustained 1)
patterns have been shown to appear due to the walk-off

[10,11. For degeneratéD) OPO's, an interesting recent re- iA1= y1[ —(1+iA)A;+ia; A Aj+AAT +p1dyAq],

sult [12] is the continuous generation of patterns of dark 2
solitary waved13] for positive signal detuningwhere only . )

a homogeneous state can develop in the absence of walkhereAq andA, are the normalized slowly varying enve-
off). The pattern is created behind a propagating front leadloPes for pump and signal fields, respectively. The param-
ing to nonuniformly translating envelope fronts. However, €t€rso1, ¥o.1, andag, are the detunings, the cavity decay
for DOPQO's, the authors of Reﬁll] predicted’ based on an rates, and the d|ﬁract|-0n, I’espectlvely. The I’emalnlng param-
amplitude equation description, that only uniformly translat-6ters are the normalized external purpand the signal
ing fronts (Where no pattern can be fornjedxist for |arge walk-off CoeﬁICIentpl. For a detailed discussion of the lin-
finite positive signal detunings. Therefore, DOPO's exhibit€ar stability analysisLSA) of the steady staté,=E,/(1
both types of fronts and a universal description of the walk-+140),A;=0 including the walk-off we refer to previous
off effect on pattern selection is worth addressing. published paperfl0,11]. Here we just recall that whep,

In this paper we present a theoretical study of the dynami# O the absolute instability threshold, at which a dynamically
cal transition from uniformly translating fronts, leading be- self-sustained structure can develop, is such tha\Re)]

=0 wherek®= (kg ,kj) is a complex saddle point satisfying
VA (k)=0 and REVIN(k)]=0 where\ (k) is the linear-
* http;//www.imedea.uib.es/PhysDept ized eigenvalu¢10,11]. The use of a complex wave vector
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FIG. 1. Critical curve(solid line) A5(p,) [Eq. (5)] limiting the
new region of positive signal detunings of the existence of pattern
The horizontal dashed line is the limit without walk-off. The dif-
fraction parametea;=0.25.

to express the linearized solutions dxp(+At) is not sur-
prising in this contex{10-12: Its imaginary part accounts

for the mode oscillations and the real part for the envelope

front. The gradient condition is satisfied f&f=0, which

. . W
means that the stripes of the selected pattern are orlent%til;I

orthogonally to the walk-off 10—12. At the transition from
nonzero wavelength patterns to homogeneous statekj)m(
vanishes, which leads to mal wave vectork®=[k;=0kj
= Re(kf,)]. This simplifies considerably the complex expres-
sion of A (k) which reduces to a real function &f Thus we
obtain for the most unstable modRdg \ (k°)]=0):
2aj(k5)3~ (28,4, — p3)k;— p;1=0. (3)
Real solutionskf, are possible only if the signal detunirg
satisfies

1

2/3 2
231 P1-

A=A%(py)= —— 23+
1 l(pl 2(2a1)1/3p1

(4)

Note the dependence af;(p,) on the diffraction param-
etera, leading to high values of critical signal detunings for
small values ofa;. The critical curve at transitiom\;=
Af(p4) is shown in Fig. 1.

Since the walk-off parameter; is small, the above rela-
tion shows that pattern formation is possible only for small
detunings, i.e., such that;<Aj(p,). This is in agreement
with the fact that forA ; of order unity only nonlinear homo-

geneous states can develop. In this case nonlinear dynamics

is well described by a real Ginzburg-Landau equatiGhE)
[11]. However, it is clear that GLE fails in the parameter
range of pattern formation. A universal description, valid in
both regimes, can be derivéfbr a, fixed) from the scaling
law AS(p1)~p2°. To this purpose, we have performed a
weakly nonlinear analysis of the full DOPO equatidis
around threshold for signal generation by settihg=cA,

which leads top;=¢%3 with A, p of order one. The small
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parameters measures the distance from threshoped® £ 1
=¢?) in the order parameter description approach developed
in a previous worK11]. The evolution equations for the field
amplitude variables are obtained by expanding the solution
(Ag,A;) in power series ofe: (Ag,A))=¢ (¥o,¥1)
a2y i) £

With these scalings the following convective Swift-
Hohenberg equatiofSHE) is obtained for the signal:

1

2

+p1dyin— Y311+ AY),

1
I =5 (2= D= 5 (A - A2y

©)

where we have set=y;t and ¢, is a real function as a
consequence of the fact that the OPO is degenerate. The
description of DOPQ's in terms of a SHE was also the result
of Refs.[14,15; here we also account for the walk-off with
the correct scaling relations presented above. Our main aim
is to examine the emerging dynamically self-sustained pat-

Yerns so that we restrict the analytical study to the occurrence

of the absolute instability for which the linearization of the
convective SHE aroungh; =0 gives

= S (42— 1) S (Ay—ak®)2+ pik
MK =5 ("= 1) = 5 (A= k) "+ paky, (6)

erek is a complex wave vector satisfying the saddle point

ndition,
2 oy
0,'_kx—2a1(Al_a1k )kx—o,
@)
2N 5
a—ky=2a1(A1—a1k )ky+p1:0

From the systen{7) we recover the conditioki=0 while
the ky component satisfies:
2a3(ky)*—2a144(kj) — p1 =0. ®)
Note that this equation is more tractable mathematically than
the original one and it also allows one to recover the transi-
tion curveA(p,) to the leading ordep,. From Eq.(8), the
formation of patterns corresponding to nonuniformly trans-

lating envelope fronts is possible X,<Af(p;) and their
wave vectors are

3 1/3

Im(k$) = § ( 4p—;§> [P, ©
1 o 1/3

Re(ky)=— 5 ( 4—;%) (615419, (10

where ¢é.=1+1—(A,/A%)®. The most unstable modes
are those for which Ra(kj)]=0 and they oscillate with
frequency In[l)\(kj)]. Since they drift at velocity, and, as
long as no nodes disappear or are created in the nonlinear
region behind the front, the conservation of the linear flux of
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FIG. 2. The solid curves are the predicted wave vecf&rs. ]
(11)] of the emerging signal pattern from the convective SHE for _ FIG. 3. Ab§olute thresholg, for the same values gf; asin
(@ p;=0.05,(b) p;=0.15,(c) p,=0.25. The dotted curves are the Fig- 2. The solid curves are the values predicted by Eif, while
corresponding numerical solutions from the LSA. The crosses repthe dotted curves are the result of the numerical solutions from the
resent the wave vectors selected in the numerical solutions of th@OPO’s LSA. The dashed curves are the threshold given by the

governing equation$l). The remaining parameters are setAg
=0, y1=v,=1, anday=0.125.

the field nodes can be appli¢#i2], the wave number of the
generated pattern is then defined as

Qy=Im[\(k5)V/ps
=Im(k$){1+2a;p; 'Re(k})

x[A—a, Rk~ IM(K)D]}. (1D

GLE [11].

Egs. (12 versus the signal detuningy; for variousp; and

the curves compare very well with the corresponding nu-
merical results from the LSA, as shown in Fig. 3. We have
also showeddashed curvgghe thresholds obtained with the
real Ginzburg-Landau approximation and from the figure it
is clear that this approximation must be discarded in the
parameter range of small signal detunings. Similar approxi-
mations forA ;>0 of order unity have been proposed, lead-
ing to GLE’s either without walk-off 16] or with walk-off

Notice that, apart from the case of uniformly translatingl17]- In particular, for the DOPO, a Fisher-Kolmogorov

fronts [Im(kj) =Q,=0], Im(kj) andQ, are generally dif-
ferent. The predicted wave numb@, as a function of the

signal detuning is reproduced in Fig. 2 together with the

wave number selected in the exact numerical solutions of E . . g, .
agver, a correction of the typ€* (in the spirit of a SHE is

(1) and that predicted by the LSA of the same equations.

can be seen from the figure the agreement between the a

lytical predictions and the exact, numerically found values i
excellent, especially for smafl; andA;.

The threshold of absolute instability can be calculate
analytically from the condition F{e.(kf,)]=0 for both types
of fronts. After straightforward calculations we obtain

1+4a2 Re(k$)? 3 Re(kS) 2+ Im(kS)?]
for Im(kj)#0,
1+(A—ay Re(k}sl)z)z_ 2p; Re(kj)

for Im(kj)=0.
(12

2
MA~

equation(FKE, a form of the GLE with real coefficienthas
been derived17]. It is interesting to note that the FKE with
a walk-off term does not show the phenomenon of pattern
ormation behind a propagating front studied[t2]. How-
1own to account for such a phenomerids].
s In summary we have shown that DOPQ's, in presence of
walk-off, can exhibit either uniformly translating fronts or
0nonuniformly translating envelope fronts. The latter allows
the formation of patterns even for positive detunings, giving
rise to a nontrivial critical transition curve between pattern
forming and homogeneous states. We also demonstrated that
the critical transition curve can be obtained analytically and
provides a scaling law that leads to a unified description of
the dynamics through an equation of Swift-Hohenberg type.
The predictions obtained with this equation, regarding the
wave-vector selection and the absolute instability threshold,
are compared with the numerical simulations of the original
DOPO equations and the agreement is very good.
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Im(kf,) and Rekf,) by their expression in Eqg49), respec- of M.S. was supported by the European Commission
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