
s,

PHYSICAL REVIEW E FEBRUARY 2000VOLUME 61, NUMBER 2
Order parameter description of walk-off effect on pattern selection
in degenerate optical parametric oscillators
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Degenerate optical parametric oscillators can exhibit both uniformly translating fronts and nonuniformly
translating envelope fronts under the walk-off effect. The nonlinear dynamics near threshold is shown to be
described by a real convective Swift-Hohenberg equation, which provides the main characteristics of the
walk-off effect on pattern selection. The predictions of the selected wave vector and the absolute instability
threshold are in very good quantitative agreement with numerical solutions found from the equations describ-
ing the optical parametric oscillator.

PACS number~s!: 42.65.Tg, 46.65.Sf, 42.50.2p, 42.65.Yj
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In the last few years, the interest in pattern formation
nonlinear optics has increased considerably@1#. This stems
from the fact that nonlinear optical systems show the co
plexity of other spatially extended systems@2# in a context
that presents additional peculiarities such as the light po
ization @3# and the macroscopic manifestations of quant
properties@4#. Among all the possible devices, optical par
metric oscillators~OPO’s! have recently appeared as one
the most promising, not only for the richness in nonline
dynamics @5# but also for their potential applications@6#,
including low-noise measurements and detection@7# and the
possible storage of information@8,9#.

In OPO’s, the nonlinear quadratic down-conversion p
cess is most efficient when the phase matching conditio
fulfilled. This can be achieved by taking advantage of
crystal birefringence to compensate for the unavoidable
terial chromatic dispersion. As a result ordinary and extra
dinary rays may have different Poynting vector directio
and therefore the rays may diverge, i.e., walk-off, from o
another as they propagate through the nonlinear med
Very recently, convective instabilities and noise-sustain
patterns have been shown to appear due to the walk
@10,11#. For degenerate~D! OPO’s, an interesting recent re
sult @12# is the continuous generation of patterns of da
solitary waves@13# for positive signal detuning~where only
a homogeneous state can develop in the absence of w
off!. The pattern is created behind a propagating front le
ing to nonuniformly translating envelope fronts. Howev
for DOPO’s, the authors of Ref.@11# predicted, based on a
amplitude equation description, that only uniformly transl
ing fronts ~where no pattern can be formed! exist for large
finite positive signal detunings. Therefore, DOPO’s exhi
both types of fronts and a universal description of the wa
off effect on pattern selection is worth addressing.

In this paper we present a theoretical study of the dyna
cal transition from uniformly translating fronts, leading b
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hind them a homogeneous state, to nonuniformly transla
envelope fronts, giving rise to the formation of a nonline
pattern. The exact analytical expression of the transit
curve in terms of signal detuning and walk-off paramet
is found. It reveals the existence of a scaling law govern
the transition. Using this scaling we have performed
order parameter description, near threshold, which leads
real convective Swift-Hohenberg equation. This equat
provides the generic description of the walk-off effect
transverse pattern formation. Based on this reduced m
we have obtained analytical expressions for the wave-ve
selection rules and the threshold of the absolute instabi
The predictions are in very good agreement, both qual
tively and quantitatively, with numerical simulations of th
DOPO’s original equations.

We start from the standard model of a type I pha
matched degenerate OPO in the mean-field approxima
@10,11#:

] tA05g0@2~11 iD0!A01 ia0n'A02A1
21E~x,y!#,

~1!

] tA15g1@2~11 iD1!A11 ia1n'A11A0A1* 1r1]yA1#,
~2!

whereA0 and A1 are the normalized slowly varying enve
lopes for pump and signal fields, respectively. The para
etersD0,1, g0,1, anda0,1 are the detunings, the cavity deca
rates, and the diffraction, respectively. The remaining para
eters are the normalized external pumpE and the signal
walk-off coefficientr1. For a detailed discussion of the lin
ear stability analysis~LSA! of the steady stateA05E0 /(1
1 iD0),A150 including the walk-off we refer to previou
published papers@10,11#. Here we just recall that whenr1
Þ0 the absolute instability threshold, at which a dynamica
self-sustained structure can develop, is such that Re@l(ks)#
50 whereks5(kx

s ,ky
s) is a complex saddle point satisfyin

¹kl(k)50 and Re@¹k
2l(k…#>0 wherel(k) is the linear-

ized eigenvalue@10,11#. The use of a complex wave vecto
2133 ©2000 The American Physical Society
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to express the linearized solutions exp(k•r1lt) is not sur-
prising in this context@10–12#: Its imaginary part account
for the mode oscillations and the real part for the envelo
front. The gradient condition is satisfied forkx

s50, which
means that the stripes of the selected pattern are orie
orthogonally to the walk-off@10–12#. At the transition from
nonzero wavelength patterns to homogeneous states, Imky

s)
vanishes, which leads to areal wave vectorks5@kx

s50,ky
s

5Re(ky
s)#. This simplifies considerably the complex expre

sion of l(k… which reduces to a real function ofk. Thus we
obtain for the most unstable mode„Re@l(ks)#50…:

2a1
2~ky

s!32~2a1D12r1
2!ky

s2r150. ~3!

Real solutionsky
s are possible only if the signal detuningD1

satisfies

D1>D1
c~r1!5

3

2~2a1!1/3
r1

2/31
1

2a1
r1

2 . ~4!

Note the dependence ofD1
c(r1) on the diffraction param-

etera1 leading to high values of critical signal detunings f
small values ofa1. The critical curve at transitionD15
D1

c(r1) is shown in Fig. 1.
Since the walk-off parameterr1 is small, the above rela

tion shows that pattern formation is possible only for sm
detunings, i.e., such thatD1,D1

c(r1). This is in agreemen
with the fact that forD1 of order unity only nonlinear homo
geneous states can develop. In this case nonlinear dyna
is well described by a real Ginzburg-Landau equation~GLE!
@11#. However, it is clear that GLE fails in the paramet
range of pattern formation. A universal description, valid
both regimes, can be derived~for a1 fixed! from the scaling
law D1

c(r1);r1
2/3. To this purpose, we have performed

weakly nonlinear analysis of the full DOPO equations~1!
around threshold for signal generation by settingD15«D,
which leads tor15«2/3r with D, r of order one. The smal

FIG. 1. Critical curve~solid line! D1
c(r1) @Eq. ~5!# limiting the

new region of positive signal detunings of the existence of patte
The horizontal dashed line is the limit without walk-off. The di
fraction parametera150.25.
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parameter« measures the distance from threshold (m221
5«2) in the order parameter description approach develo
in a previous work@11#. The evolution equations for the fiel
amplitude variables are obtained by expanding the solu
(A0 ,A1) in power series of «: (A0 ,A1)5« (c0 ,c1)
1«2(c0

(2) ,c1
(2))1¯ .

With these scalings the following convective Swif
Hohenberg equation~SHE! is obtained for the signal:

]tc15
1

2
~m221!c12

1

2
~D12a1n'

2 !2c1

1r1]yc12c1
3/~11D0

2!, ~5!

where we have sett5g1t and c1 is a real function as a
consequence of the fact that the OPO is degenerate.
description of DOPO’s in terms of a SHE was also the res
of Refs.@14,15#; here we also account for the walk-off wit
the correct scaling relations presented above. Our main
is to examine the emerging dynamically self-sustained p
terns so that we restrict the analytical study to the occurre
of the absolute instability for which the linearization of th
convective SHE aroundc150 gives

l~k!5
1

2
~m221!2

1

2
~D12a1k2!21r1ky , ~6!

wherek is a complex wave vector satisfying the saddle po
condition,

]l

]kx
52a1~D12a1k2!kx50,

~7!
]l

]ky
52a1~D12a1k2!ky1r150.

From the system~7! we recover the conditionkx
s50 while

the ky
s component satisfies:

2a1
2~ky

s!322a1D1~ky
s!2r150. ~8!

Note that this equation is more tractable mathematically t
the original one and it also allows one to recover the tran
tion curveD1

c(r1) to the leading orderr1. From Eq.~8!, the
formation of patterns corresponding to nonuniformly tran
lating envelope fronts is possible ifD1,D1

c(r1) and their
wave vectors are

Im~ky
s!5

A3

2 S r1

4a1
2D 1/3

@j1
1/32j2

1/3#, ~9!

Re~ky
s!52

1

2 S r1

4a1
2D 1/3

@j1
1/31j2

1/3#, ~10!

where j6516A12(D1 /D1
c)3. The most unstable mode

are those for which Re@l(ky
s)#50 and they oscillate with

frequency Im@l(ky
s)#. Since they drift at velocityr1 and, as

long as no nodes disappear or are created in the nonli
region behind the front, the conservation of the linear flux

s.
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the field nodes can be applied@12#, the wave number of the
generated pattern is then defined as

Qy[Im@l~ky
s!#Õr1

5Im~ky
s!$112a1r1

21Re~ky
s!

3@D12a1„Re~ky
s!22Im~ky

s!2
…#%. ~11!

Notice that, apart from the case of uniformly translati
fronts @ Im(ky

s)5Qy50#, Im(ky
s) and Qy are generally dif-

ferent. The predicted wave numberQy as a function of the
signal detuning is reproduced in Fig. 2 together with t
wave number selected in the exact numerical solutions of
~1! and that predicted by the LSA of the same equations.
can be seen from the figure the agreement between the
lytical predictions and the exact, numerically found values
excellent, especially for smallr1 andD1.

The threshold of absolute instability can be calcula
analytically from the condition Re@l(ky

s)#50 for both types
of fronts. After straightforward calculations we obtain

mA
255

114a1
2 Re~ky

s!2@3 Re~ky
s!21Im~ky

s!2#

for Im~ky
s!Þ0,

11~D12a1 Re~ky
s!2!222r1 Re~ky

s!

for Im~ky
s!50.

~12!

A closed analytical form of the absolute threshold as
function of parameters can be obtained by substitut
Im(ky

s) and Re(ky
s) by their expression in Eqs.~9!, respec-

tively. We have reproduced the absolute threshold cur

FIG. 2. The solid curves are the predicted wave vectors@Eq.
~11!# of the emerging signal pattern from the convective SHE
~a! r150.05,~b! r150.15,~c! r150.25. The dotted curves are th
corresponding numerical solutions from the LSA. The crosses
resent the wave vectors selected in the numerical solutions o
governing equations~1!. The remaining parameters are set toD0

50, g15g051, anda050.125.
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Eqs. ~12! versus the signal detuningD1 for variousr1 and
the curves compare very well with the corresponding n
merical results from the LSA, as shown in Fig. 3. We ha
also showed~dashed curves! the thresholds obtained with th
real Ginzburg-Landau approximation and from the figure
is clear that this approximation must be discarded in
parameter range of small signal detunings. Similar appro
mations forD1.0 of order unity have been proposed, lea
ing to GLE’s either without walk-off@16# or with walk-off
@17#. In particular, for the DOPO, a Fisher-Kolmogoro
equation~FKE, a form of the GLE with real coefficients! has
been derived@17#. It is interesting to note that the FKE with
a walk-off term does not show the phenomenon of patt
formation behind a propagating front studied in@12#. How-
ever, a correction of the type¹4 ~in the spirit of a SHE! is
known to account for such a phenomenon@18#.

In summary we have shown that DOPO’s, in presence
walk-off, can exhibit either uniformly translating fronts o
nonuniformly translating envelope fronts. The latter allow
the formation of patterns even for positive detunings, givi
rise to a nontrivial critical transition curve between patte
forming and homogeneous states. We also demonstrated
the critical transition curve can be obtained analytically a
provides a scaling law that leads to a unified description
the dynamics through an equation of Swift-Hohenberg ty
The predictions obtained with this equation, regarding
wave-vector selection and the absolute instability thresh
are compared with the numerical simulations of the origi
DOPO equations and the agreement is very good.
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FIG. 3. Absolute thresholdmA for the same values ofr1 as in
Fig. 2. The solid curves are the values predicted by Eqs.~12!, while
the dotted curves are the result of the numerical solutions from
DOPO’s LSA. The dashed curves are the threshold given by
GLE @11#.
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